Locomotion in modular robots using the Roombots Modules

Semester Project Sandra Wieser, Alexander Spröwitz, Auke Jan Ijspeert

Goal of the Project

- To explore the locomotion possibilities of a modular robot.
 - This robot is composed by passive elements and Roombots robots
 - The used CPG is the one developed by Ludovic Righetti at BIRG
 - (Pattern generators with sensory feedback for the control of quadruped locomotion, Ludovic Righetti and Auke Jan Ijspeert)
 - The optimization method used is Powell's algorithm
- To discuss the pertinence of the initial decisions

Robot's Structure

Table

- 4 legs, 2 modules per leg
- Chair (stool)
 - 3 legs, 2 modules per leg

Roombot

Sandra Wieser, Locomotion in modular robotics

CPG (Central Pattern Generator)

Principle

- Distinction between swing and stand phase
- Limit cycle behavior
- Possibility of using sensor feedback and coupling
- Possibility for the actuator to be in continuous rotation

• Example of gait generation:

(Pattern generators with sensory feedback for the control of quadruped locomotion, Ludovic Righetti and Auke Jan Ijspeert)

Free Parameters

Continuous / Discrete Parameters

- Continuous parameter can be optimized with Powell's method
 - Example: amplitude of oscillation $\in [0,3.14]$
- Discrete parameters have to be arbitrary set, or tried by hand.
 - Example: A servomotor can work as oscillator or wheel. So the "working mode" parameter is OSCILLATION or ROTATION.
- The number of parameters to optimize has to be as small as possible, or the optimization process will take too much time.

Free Parameters

Connections between modules

CPG and servomotor phi=±offset +X

A total of 124 continuous parameters and 26 discrete parameters. Continuous parameters are reduced to 7.

Optimization

Powell algorithm (N dimensions)

- Direction set algorithm
- Gradient descendant
- Golden Search (1 dimension)
 - Also gradient descendant

Fitness function:

- To maximize: radial distance covered in 20 seconds
- To minimize: $\frac{1}{1+D}$, where D is the distance (P_{final}-P₀)

50

40

30

20

10

First Results (1)

- We tried an optimization of the parameters for the chair (3 legs, 2 modules per leg).
- The modules have 3 motors: s1, m1, s2.
- There's a common value for all s1 motors, another for all s2 motors, and so on
- Each configuration of rotation and oscillation was tested. (3 motors, 2 possible configuration per motor, 2³ optimizations)
- An optimization process takes around 2 hours

First Results (2)

	Distance Covered [m] (P ₀ =A)	Distance Covered [m] (P ₀ =B)
RRR	-	4.32
ORO	3.80	12.66
RRO	2.87	1.98
ROR	0.90	7.68
ROO	1.75	-
ORR	5.14	6.74
OOR	6.11	2.36
000	4.30	4.61

- > The fitness function has various local minima/maxima
- Powell's can't find the global minimum/maximum of the function

Run Powell many times with different random starting points, then taking the maximum of the maxima

First Discussion (2)

Optimization

Fitness landscape for critical solutions

Two factors make the function to optimize irregular (noisy):

- Constraints due to passive elements (legs torn and stuck)
- Maximum torque values makes sometimes the robot fall

Schedule

Initial plan

Actually done

Schedule

Still to be done

- Exploration of motion's possibilities of the table robot
- Implementation of different gaits matrix
- Test of different robot/parameters configuration

Results(3)

Bad results are not only due to torque values...

